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Abstract

The effect of a patched sliding-zone interface on the transmission of acoustic waves is examined for
two- and three-dimensional model problems. A simple but general interpolation scheme at the patched
boundary passes acoustic waves without distortion, provided that a sufficiently small time step is
taken. A guideline is provided for the maximum permissible time step or zone speed that gives an
acceptable error introduced by the sliding-zone interface.
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Introduction
The prediction and control of ducted fan noise are im-

portant elements of the NASA Advanced Subsonic
Technology Noise Reduction Program. Current meth-
ods of prediction rely extensively on field measure-
ments and analytical scaling techniques. As computers
continue to become more powerful, Euler and Navier-
Stokes computer codes for ducted-fan noise prediction
have become increasingly affordable. Recent advances
in algorithms1,2,3 that can enhance the efficiency of
time-accurate Euler and Navier-Stokes computations
also make difficult computations, such as three-dimen-
sional (3D) rotor-stator interactions, better suited for in-
clusion in future engine design cycles.

Previous work by Rai4 and Gundy-Burlet et al.5 dem-
onstrated the feasibility of using Navier-Stokes compu-
tations for time-accurate rotor-stator interactions.
Gundy-Burlet et al. utilized a combination of overlap-
ping and patched grids; the motion of the rotor relative
to the stator was accomplished by “sliding” the rotor
grid system past the stator grid system and utilizing a
non-conservative linear interpolation to transfer infor-
mation between the two grid systems. Hall and
Delaney6 employed a similar patched sliding-zone inter-
face strategy to compute ducted prop-fan flows. Chen
and Chakravarthy7 utilized patched sliding-zone inter-
faces to perform rotor-stator computations. They used a
simple piecewise-constant projection of flow variables
between grid zones, with an area-weighting strategy. Ja-
nus and Whitfield8 utilized localized grid distortion to
pass information between zones that move relative to
one another in a prop-fan simulation. Rather than em-

ploy interpolation, grid points near the zone interface
were distorted, then “clicked” to new positions when ap-
propriate. In refs. 4–8, the focus of the computations
was the prediction of global aerodynamic characteris-
tics. Rangwalla and Rai9 compared the numerically cal-
culated tonal acoustics with theoretical values for a two-
dimensional (2D) rotor-stator interaction. Emphasis was
placed on the effects of boundary conditions and bound-
ary extent; however, the effect of the patched sliding-
zone interface on the accuracy of simulating the passage
of acoustic waves was not explored.

Because accurate prediction of acoustic waves is es-
sential to any noise-prediction analysis, the effect of the
sliding-zone interface on the passage of such waves
must be addressed. In the present paper, the effect of a
patched sliding-zone interface similar to that employed
in refs. 5–7 is examined for several 2D problems, as well
as for the passage of typical rotor-stator interaction
modes through a 3D duct with a rotating zone. The ef-
fects of time step and speed of the moving zone are ex-
amined; an engineering rule of thumb for maximum
permissible time step or zone speed is developed.

Governing Equations
The compressible thin-layer Navier-Stokes equations,

written in an inertial reference frame in generalized co-
ordinates, are

(1)

where

(2)
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(3)

The inviscid flux terms are

(4)

(5)

and

(6)

The variableJ represents the Jacobian of the transforma-
tion

(7)

and the contravariant velocities are given by

(8)

(9)

and

(10)

The viscous terms are
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(12)

and

(13)

where

(14)

and  and  are the shear stress and heat flux terms, re-
spectively. When the thin-layer assumption is invoked,
the viscous cross-derivative terms in, , and  are
neglected.

For the applications here, only the inviscid (Euler)
equations are employed. The equations are closed by the
equation of state for a perfect gas

(15)

Description of the Code
The computer code CFL3D10 solves the 3D time-de-

pendent thin-layer Navier-Stokes equations with an up-
wind finite-volume formulation. This code can solve
flows over multiple-zone grids that are connected in a
one-to-one, patched, or overset manner, and can employ
grid sequencing, multigrid, and local time stepping in
accelerating convergence to steady state. Upwind-bi-
ased spatial differencing is used for the inviscid terms,
and flux limiting is used to obtain smooth solutions in
the vicinity of shock waves. Viscous terms, when em-
ployed, are centrally differenced. The equations are
solved implicitly with the use of a three-factor approxi-
mate factorization (AF). Either the flux-difference-split-
ting (FDS) method of Roe11 or the flux-vector-splitting
(FVS) method of Van Leer12 can be employed to obtain
fluxes at the cell faces. The FDS approach is used for all
results in this paper.
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Time-Advancement and Subiteration Algorithm
The CFL3D code is advanced in time with an implicit

AF method. The implicit spatial derivatives are first-or-
der accurate, which results in block-tridiagonal inver-
sions for each sweep. However, for solutions that utilize
FDS the block-tridiagonal inversions are further simpli-
fied with a diagonal algorithm; when the viscous terms
are used, a spectral radius scaling is employed.

Second-order temporal accuracy for a single-step AF
scheme is forfeited for unsteady computations with
these simplifications to the left-hand side. One method
for recovering the desired accuracy is through the use of
subiterations. Two subiteration strategies have been im-
plemented in CFL3D. These strategies were explored in
detail by Rumsey et al.3 The method employed for the
computations in this paper is termed the “pseudo time
subiteration” (or “ -TS”) method, which uses a second-
order-accurate temporal discretization. In the literature
(e.g., Venkateswaran and Merkle13), the -TS method
is also referred to as the “dual time” method because a
pseudo time is used to iterate to the next desiredphysical
time. The chief advantage to the-TS subiteration strat-
egy is that it frees the user from numerical constraints on
the time step; an appropriate physical time step can be
selected to resolve the physics of the flow in question.

Dynamic Patched-Grid Algorithm
A patched-grid interface implies that two zones share

a common interface at which the grid points do not nec-
essarily connect in a one-to-one manner. For grids in rel-
ative motion to one another (for example, when a grid
zone around a rotor slides past a grid zone around a sta-
tor), dynamic patched interfacing is a relatively easy
way to handle the transfer of time-accurate data between
zones.

In CFL3D, the patching is accomplished non-conser-
vatively in the following way. First, at the patched inter-
face, the problem is reduced by 1 degree of freedom
because data are used only in the two planes of cell cen-
ters in computational space nearest each interface to up-
date the ghost-cell boundary conditions in the other
zone. For example (as shown in figure 1 in two dimen-
sions), if thek = kdim boundary of zone 1 interfaces with
thek = 1 boundary of zone 2, then zone 2 obtains infor-
mation for its two ghost cells from thek = kdim – 1 and
k = kdim – 2 cell centers of zone 1; zone 1 obtains infor-
mation for its two ghost cells from thek = 1 andk = 2
cell centers of zone 2.

Interpolation is accomplished dynamically at each
time step (every time the moving zone changes posi-
tion). For each face center point on the interface in the
“to” zone, a corresponding real-valued index location is
determined in the “from” zone. The primitive variables
are then interpolated to this real-valued index location.
A simple 2D example is given in figure 2; zone 2 acts as
the “to” zone, and only one row of ghost cells is shown
in the “from” zone for clarity. In this example, thecenter
point of the cellj = 1 in zone 2 lines up with
in zone 1, which lies in the cellj = 1 of zone 1. There-
fore, this particular ghost-cell boundary condition is in-
terpolated by using the primitive variables atj = 1 in
zone 1 and an appropriately weighted fraction of the-
direction gradient atj = 1. Further details of the patched-
grid algorithm are given in Biedron and Thomas.14

When periodic boundary conditions are applied and

τ

τ

τ

η 0.6667=

η

one grid zone slides relative to another, copies of both
the moving and nonmoving zones must be supplied,
which are translated or rotated appropriately to ensure
that each “to” zone has a “from” neighbor at all times
and vice versa. To avoid the necessity of making too
many copies over long times, the current algorithm also
periodically rotates or translates the moving block and
its solution whenever its movement exceeds a specified
limit.

Results
Several 2D and 3D model problems are examined to

study the effect of a patched sliding-zone interface on
the passage of acoustic waves. Unless otherwise noted,
three -TS subiterations with three levels of multigrid
are used for the results in this paper.

Fig. 1. Sample 2D patched interface.

Fig. 2. Sample 2D patched interface, with zone 2 as “to” zone.
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2D Axially-Moving Acoustic Waves
The first test case involves acoustic waves that are

moving axially in two dimensions (, ). At the left end
of a computational domain, waves are generated by per-
turbing the free-stream pressure levels in accordance
with

(16)

where  is the nondimensional free-stream static pres-
sure ( ) and  is taken as 0.04518. Time is nondi-
mensionalized by unit length and speed of sound. The
free-stream is quiescent.

This test case is patterned after a computation by
Khan,15 who used a perturbational form of the Euler
equations to compute the nonlinear behavior of a plane
acoustic wave that was propagating axially; the results
were compared with the theoretical predictions of
Pierce16 at locations prior to where nonlinear steepening
causes shock formation. In the current study, a sinusoi-
dal transverse variation of pressure (in thez direction) is
also imposed to test the effect of a sliding-zone interface
(no effect is realized otherwise). Comparison with the
theoretical results is made at a transverse location at
which the acoustic wave front is aligned with thez-axis.
The variation in thez direction is gradual enough to al-
low the wave to approximate a plane wave at this loca-
tion.

The computation is performed by using either one or
two zones. In the latter case, zone 2 slides in thez direc-
tion along one end of zone 1; a patched sliding-zone in-
terface connects the two zones. (See figure 3.) The upper
and lower boundaries are treated as periodic interfaces,
and the right boundary employs a characteristic bound-
ary condition. To minimize the possibility of spurious
reflections from the right boundary, the grid is stretched
in thex direction past .

The parameter  is taken as 0.55164 (which corre-
sponds to a frequency of 0.6 kHz in air), and is taken

Fig. 3. Sketch of 2D case for axially-moving acoustic waves.
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as 3.2. This latter parameter yields one complete period
of pressure fluctuation between  and .

Prior to evaluating the effect of the sliding-zone inter-
face, parametric studies were used to determine the grid
size and time step necessary to capture the physics of
this flow field with the CFL3D code. Figure 4 shows the
effect of varying the number of cells in thez direction
from 8 to 64; 16 to 32 grid points are sufficient to accu-
rately depict the sinusoidal variation in the acoustic
pressure.

The effect of  is shown in figures 5 and 6. The
wavelength in thex direction for this case is 0.552. Us-
ing a constant  spacing of 0.1 (32 points per wave in
the z direction), the  spacing is varied from 0.02554
(approximately 22 points per wave) to 0.006385 (ap-
proximately 86 points per wave). Figure 5 shows the
pressure as a function of  along , where  is
the value of the distance at which the shock forms:

(17)

(  indicates a dimensional quantity). In this equation,
,  is the frequency in rad/s,  is the den-

sity, and  is the speed of sound. For this case,
. Figure 6 shows the amplitude of the funda-

mental and the first two harmonics as a function of dis-
tance. The computational curves in this figure are
generated by establishing a periodic solution, comput-
ing over a nondimensional time of 1.1, and using a Fou-
rier decomposition on the time histories of pressure at
each spatial location. Three higher harmonics are com-
puted; only the first two are shown in figure 6 for clarity.
The predicted fundamental and the first two harmonics
agree well with the theoretical predictions of Pierce16

with 43 or more points per wave. With only 22 points
per wave, significant error is realized as  approaches
1, particularly for the higher harmonics.

Fig. 4. Effect of number of points inz direction on pressures at
, with , , and .
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The effect of time step is shown in figure 7. A time
step of  (55 steps per cycle) is sufficient to
capture the fundamental and first harmonic but is not
sufficient for the higher harmonics. A time step of

 (110 steps per cycle) is temporally con-
verged on this grid for all harmonics up to the third har-
monic.

In summary, the nondimensional grid size necessary
for the current numerical algorithm to accurately cap-
ture the physics of this flow is as follows:  (32
points per transverse wave) and  (43
points per axial wave). The nondimensional time step
necessary is  (110 steps per cycle). This

Fig. 5. Effect of number of points inx direction on pressures at
, with , , and .

Fig. 6. Effect of number of points inx direction on harmonics at
, with  and .
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∆t 0.01=

∆t 0.005=

∆z 0.1=
∆x 0.01277=

∆t 0.005=

baseline grid and time step are utilized to assess the ef-
fect of a sliding-zone interface.

Although not shown, a two-zone grid with zone 2 held
stationary yields a solution that is identical to the single-
zone solution. When zone 2 slides past zone 1 at a con-
stant velocity, the solution becomes distorted as the zone
speed increases, as shown in figure 8. In this plot, the
theoretical predictions and the third harmonic are not
shown, and the computed results are displayed as lines
rather than symbols for clarity. The zonal interface is at

. Up to a speed of roughly  (non-
dimensionalized by the speed of sound), the solution is
essentially unaffected. At , however, the solu-
tion deteriorates significantly.

At a time step of  and a zone speed of
, zone 2 slides past one periodic variation in

the acoustic data (i.e., the space over which the flow
field is periodic in the z direction) in approximately 107
time steps. This parameter can be used as a rule-of-
thumb indicator of the limit on the time step when a slid-
ing zone is present. Extensive investigation by the au-
thor (not all of which is reported here) indicates that if a
zone is sliding past another zone and flow-field spatial
variations in the direction of zone motion are present,
then the time step must be set to allow approximately 80
or more time steps for the moving zone to traverse one
period of that variation. This rule of thumb is summa-
rized by the following equations:

(18)

or

(19)

Fig. 7. Effect of time step on harmonics at , with
 and .
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where  is the spatial distance in the direction of
zone motion over which the flow field varies by approx-
imately one period and  is the component of the
acoustic-wave velocity parallel to the moving-zone in-
terface. Because this rule of thumb is based only on
qualitative estimates of acceptable error, it is best uti-
lized as a guideline for establishing an initial estimate
for the maximum time step or zone speed. Further re-
finement to the desired tolerance can be made through
parametric studies.

In the case of axially-moving waves, . If the
time step is fixed at , then the maximum zone
speed according to the guideline is roughly 8. This con-
clusion is consistent with the results in figure 8. If, on
the other hand, the zone speed is fixed at ,
then the time step must be no larger than .
The results obtained with  and
are contrasted with those obtained with  and

 in figures 9 and 10. The former result shows
little distortion of the pressure contours in zone 2,
whereas the latter shows large distortion. The oval con-
tours should travel left to right only, with some com-
pression, and then diminish past , where the
grid is stretched.

This rule of thumb is independent of grid spacing in
the direction of zone motion. Although not shown, two-
zone results with 17, 33, and 65 grid points in the z di-
rection yield nearly identical results when  and
are held fixed. Also, if zone 1 is clustered so that var-
ies from 0.1 to 0.0001 while zone 2 retains uniform grid
spacing, the results again follow the same rule of thumb.
The number of -TS multigrid subiterations currently
employed (3) is sufficient to drive the norm of the
equation for density down by at least 1.5 orders of mag-
nitude for each time step. The use of six subiterations
drives the residual down 3.5 orders for each time step,
with no perceptible change in the solution.

Fig. 8. Effect of zone speed on harmonics at , with
, , and .
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2D Vibrating Plates
The following 2D model problem is patterned after a

computation by Huff.17 An infinite row of vibrating flat
plates is simulated on the rectangular domain depicted
in figure 11. The plates, of chord length , are separat-
ed by height . Slip-velocity (Euler)
boundary conditions are applied on the plates, and peri-
odic boundary conditions are applied elsewhere on the
upper and lower boundaries. The left and right bound-
aries employ a characteristic boundary condition, and
the grid is stretched in thex direction past

Fig. 9. Pressure contours with , , and
.

Fig. 10. Pressure contours with , , and
.
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. When used, a sliding-zone interface is
employed at a location 0.5 chord length downstream of
the trailing edge of the plates, which vibrate in phase
with each other in accordance with

(20)

where  is the frequency in rad/s.

If the lengths are nondimensionalized by and time by
 and the reduced frequency is defined as

(21)

then the nondimensional equation that defines the plate
vibration becomes

(22)

Here,  is taken as 0.00004, , and .
Many acoustic waves generated by this test problem
travel at an oblique angle in both directions relative to
the sliding interface. At this frequency, approximately
four complete cycles of pressure variation span the
space between the plates. Hence, . A verti-
cal uniform grid spacing of  is used,
which results in a spatial resolution of approximately 32
grid points per wave. The grid spacing in the axial direc-
tion is  between  and  and is
stretched past . Although not shown, parametric
studies indicate that this grid spacing is adequate to spa-
tially resolve this flow field.

Because this model problem is based loosely on the
types of acoustic waves that may be generated by vibrat-
ing stator vanes in an engine, computations are carried
out with a fixed zone speed that is comparable to that of
a typical maximum rotor tip speed. Hence,
is chosen; this value corresponds to a tip Mach number

Fig. 11. Sketch of 2D vibrating-plate case.
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of . Equation (19), with  (because
the waves travel obliquely to the zone interface with a
maximum speed equal to the speed of sound), is used to
determine a maximum time step of .
Time-step studies (not shown) indicate that the time step
necessary to adequately resolve the physics of this flow
field is approximately , which corresponds
to 400 time steps per period of plate oscillation. Hence,
given the fixed zone speed of  in this case,
the time-step constraint that is attributable to zone mo-
tion is more restrictive than the time-step constraint
needed to adequately resolve the flow field.

Because of the limitation caused by zone motion, a
time step  is employed. Pressure contours
(nondimensionalized by ) for a single zone are

Fig. 12. Pressure contours with one zone, , and
.

Fig. 13. Pressure contours with two zones, ,
, and .

Fig. 14. Pressure contours with two zones, ,
, and .
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shown in figure 12. Contour levels range from 0.712 to
0.716 in steps of 0.0002. Figures 13 and 14 show the re-
sults of using two zones, with time steps of

 and , respectively. Results
with the smaller time step are only slightly affected by
the sliding-zone interface, whereas results with the larg-
er time step show greater distortion of the acoustic
waves after they have passed through the zone interface.
Additional details of these differences are shown in fig-
ure 15, which is a plot of pressure levels as a function of
x along a line at .

3D Rotor-Stator Interaction Modes
To assess the passage of acoustic waves through a

sliding-zone interface in a more realistic configuration,
theoretical rotor-stator interaction modes are derived
based on a 16-blade 20-vane NASA Langley model,18

with duct radius  m, Mach number
, and rotor speed 16,900 rpm. The theoretical

levels of pressure perturbation are

(23)

where  is the magnitude of the perturbation, taken as
 (  is taken as 100,000 Pa), and is the

Bessel function of order m. One of the propagating
modes (for a single blade passage frequency (BPF)) is
the (–4,1) mode, where  is the circumferential
mode number and  is the radial mode number. For
a single BPF,  m–1; for the (–4,1) mode,

 m–1 and  m–1. This mode
spins in the direction that is opposite to that of the rotor.

To test whether this acoustic mode can be propagated
undistorted through a patched sliding-zone interface, a
3D time-accurate computation is performed in a cylin-
drical duct. Because the (–4,1) mode is periodic over

, the grid used is a quarter of a cylinder. The grid ex-
tends from  to  m and is divided into
three zones. The middle zone, which extends from

 to  m, can be rotated. Time-
dependent pressure perturbations are imposed at the
downstream boundary (at ) with equation (23).

Fig. 15. Pressures along  with .
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Based on grid studies (not shown), the grid that repre-
sents the best compromise between accuracy and effi-
ciency for this case is , with
m in the unstretched portion of the mesh. This grid size
yields 33 points per wave in the circumferential direc-
tion and approximately 25 points per wave in the axial
direction, which is sufficient to propagate this mode
through both downstream zones with reasonably mini-
mal phase shift and attenuation. (Maximum pressure
levels are computed to be approximately  Pa,
whereas the exact linear solution is  Pa.) The radial
and circumferential spacing is uniform, and the axial
spacing is uniform in the two downstream zones (with
121 grid points each) and is stretched in the upstream
zone. The grid, with every fourth grid point plotted in
the axial and circumferential directions for clarity, is
shown in figure 16. In this figure, the middle zone is
shown in a rotated position.

Time-step studies (also not shown) indicate that at
least 36–71 time steps per period are required to propa-
gate this mode through both downstream zones with
minimal attenuation and phase shift. Therefore, a nondi-
mensional time step  is employed, which
corresponds to 71 time steps per period for BPF.

The 3D duct acoustic modes show less sensitivity to a
moving zone than the 2D test cases. A minimum of ap-
proximately 40 (rather than 80) time steps is required for
the moving zone to pass one spatially periodic variation
in the flow field. Therefore, for rotating zones, equations
(18) and (19) are modified to read as

(24)

or

(25)

A fixed moving-zone speed of  rpm re-
sults in a maximum allowable nondimensional time step
of  (with  and

Fig. 16.  duct grid (points removed for clarity).

273 33 33×× ∆x′ 0.00116=

35±
40±

∆t 0.001=

Flow direction

Pressure perturbation boundary
condition applied at downstream
boundary

273 33 33××

θ̇zone( ) max θ̇data–
θperiod

40∆t
---------------≈

∆tmax

θperiod

40 θ̇zone θ̇data–
--------------------------------------≈

θ̇zone 16 900,=

∆tmax 0.0014≈ θperiod 90°=
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 rpm). This time-step limitation that re-
sults from zone motion is slightly higher than the time
step of  necessary to resolve the physics of
the flow (regardless of zone motion). Therefore, for this
case, the constraint due to the numerical resolution of
the physics is more restrictive than the constraint due to
zone motion, and the zone motion is expected to have
little or no discernible effect on the temporally resolved
solution.

The acoustic waves generated by the downstream per-
turbation propagate upstream in a spiral manner (i.e.,
like a “barber pole”). A total nondimensional time of

 is sufficient to achieve a periodic solution
through the two downstream zones. Figure 17 shows
pressure perturbation levels as a function of along the
duct wall at a = Constant location for a nonrotating
zone and for a zone that is rotating at 16,900 rpm. Re-
sults are essentially identical for both cases, which indi-
cates, as expected, that the sliding-zone interface does
not distort the (–4,1) mode acoustic waves with this grid
and time step. Each computation requires approximately
4 hr of CPU time on NASA Langley Research Center’s
CRAY Y-MP computer.

Figure 18 shows the effect of increasing the zone ro-
tation speed. Tripling the rotation speed results in negli-
gible distortion, whereas quintupling the speed changes
the character of the solution upstream of the moving-
zone interface. With equation (24), a time step of

 allows for a maximum zone speed of 53,113
rpm. This maximum speed is consistent with the results
in the figure. Five subiterations are required for the
higher zone speeds.

Other propagating modes are investigated by con-
structing a  grid similar to the one depicted
in figure 16, except that  m and the two
downstream zones each extend only  m. This
shorter axial extent allows all modes of interest to prop-
agate through both downstream zones in a reasonable
computational time. This grid spacing yields between

Fig. 17. Pressures along duct wall with  and
.

θ̇data 67 600,–=

∆t 0.001=

T 0.8=

x′
θ

Moving zone

∆t 0.001=
T 0.8=

∆t 0.001=

241 65 65××
∆x′ 0.000481=

x′ 0.05=

10–65 points per wave in the circumferential direction
and 31–82 points per wave in the axial direction, de-
pending on the mode. The computation is performed by
combining 10 different propagating modes at the down-
stream boundary, with varying acoustical strengths.
These modes are described in Table 1. Included in the
table is the acoustical strength  that is used in the
computation; also included is the theoretical cutoff ratio
of each mode. Note that these 10 modes are a represen-
tative sample of the BPF and 2 BPF propagating modes
in the NASA Langley Research Center model.18

Computations are performed both with and without
middle zone rotation. For the , , , and
modes,  is equal to , , , and ,
respectively, and  is equal to –67,600 rpm, –67,600
rpm, +45,066 rpm, and –19,314 rpm, respectively. With
equation (25), the time step recommended for a minimal
effect of zone motion at  rpm is

, , , and , respective-
ly. However, in the interest of reducing the computa-
tional time, a nondimensional time step of  is
employed, which yields 71 time steps per period for sin-

Fig. 18. Effect of zone speed on pressures along duct wall with
 and .

Table  1 Computed Modes in 10-Mode Combined Computation

Mode , m–1 , m–1 , m–1 , Pa cutoff

(–4,1) 87.97 38.17 –211.37 30 2.88
(–4,2) 87.97 66.64 –191.80 60 1.65
(–4,3) 87.97 91.04 –159.55 100 1.21
(–8,1) 175.93 69.26 –425.84 30 3.18
(–8,3) 175.93 127.60 –388.83 60 1.72
(–8,6) 175.93 200.21 –278.67 100 1.10
(12,1) 175.93 99.63 –410.00 30 2.21
(12,4) 175.93 188.41 –306.70 60 1.17
(12,5) 175.93 213.42 –231.27 100 1.03
(–28,1) 175.93 218.80 –192.69 150 1.01

Moving zone

∆t 0.001= T 0.8=

A′

k′ kr ′ ka′ A′

m 4–= 8– 12 28–
θperiod 90° 45° 30° 12.85714°

θ̇data

θ̇zone 16 900,=
∆tmax 0.0014≈ 0.0007 0.0014 0.0005

∆t 0.001=
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gle BPF and 36 for 2 BPF. Because the  from equa-
tion (25) is exceeded for several modes, some effects
attributable to the moving zone can be expected. Com-
putations are run to a nondimensional time of .
The computations require 13 hr of CPU time on NASA
Langley Research Center’s CRAY Y-MP computer or
5.8 hr on the NAS CRAY C-90 computer. Approximate-
ly 50 million words of memory are required. Results are
analyzed by decomposing the computed solutions at
various axial stations into individual modal amplitudes
and comparing these amplitudes with the theoretical
(undiminished) pressure amplitude.

Results for the , , , and  modes are
shown in figures 19–22. Note that the numerical algo-
rithm, with this grid and time step, has difficulty propa-
gating those modes that have the lowest cutoff ratios,
regardless of whether a moving zone is employed. In
general, the lower the cutoff ratio, the more the acoustic
wave is attenuated. Further studies need to be performed
to determine the grid and time-step requirements for all
modes of interest. Overall, the effects of the sliding-
zone interface on the transmission of acoustic modes are
very slight; the least effect occurs for the
modes.

Conclusions
Patched sliding-zone interfaces, in combination with

the time-accurate Euler and Navier-Stokes equations,
are employed for aerodynamic computations of rotor-
stator interactions (e.g., refs. 4–7). However, before
codes with sliding interfaces can be used as a major part
of any noise-prediction effort, the accuracy with which
acoustic waves are passed through the sliding-zone in-
terfaces must be assessed. Preliminary findings indicate
that an important factor that contributes to the accuracy
of acoustic-wave passage is the number of time steps re-
quired for the sliding zone to move past spatial varia-

Fig. 19. Acoustic amplitudes for  modes in 10-mode
combined computation.

∆tmax

T 0.75=

m 4–= 8– 12 28–

m 4–=

Moving zone

(–4,1)

(–4,2)

(–4,3)

m 4–=

tions in the flow field that exist in the direction parallel
to the sliding-zone interface (e.g., circumferential varia-
tions for duct flows). To avoid unreasonable distortions,
at least 40–80 time steps are required for the sliding
zone to pass one period of the spatial variation. If the
time step is too large, then distortions in the acoustic
waves result. This rule of thumb has been demonstrated
for two simple two-dimensional test problems, as well
as for a three-dimensional-duct test problem.

Fig. 20. Acoustic amplitudes for  modes in 10-mode
combined computation.

Fig. 21. Acoustic amplitudes for  modes in 10-mode
combined computation.

Moving zone

(–8,1)

(–8,3)

(–8,6)

m 8–=

(12,1)

(12,4)

(12,5)

Moving zone

m 12=
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